FairAdaBN:

Mitigating unfairness with adaptive batch normalization and its application to dermatological disease classification

Zikang Xu¹, Shang Zhao¹, Quan Quan², Qingsong Yao², and S. Kevin Zhou^{1,2}

1 Suzhou Institute for Advanced Research Center for Medical Imaging, Robotics, and Analytic Computing Learning (MIRACLE),

University of Science and Technology of China, Suzhou 215123, China

2 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China

$$\theta = \arg\min_{\theta} \|\mathbb{E}_{d_i \in D_{A=1}} \|(Y_i, f_{\theta}(X_i)) - \mathbb{E}_{d_i \in D_{A=0}} \|(Y_i, f_{\theta}(X_i))\|$$

$$\begin{aligned} & \text{EOpp0} = |P(\hat{Y} = 0 \mid Y = 0, A = 1) - P(\hat{Y} = 0 \mid Y = 0, A = 0)| \\ & \text{EOpp1} = |P(\hat{Y} = 1 \mid Y = 1, A = 1) - P(\hat{Y} = 1 \mid Y = 1, A = 0)| \\ & \text{EOdd} = |P(\hat{Y} = 1 \mid Y = y, A = 1) - P(\hat{Y} = 1 \mid Y = y, A = 0)|, y \in \{0, 1\} \end{aligned}$$

Contributions

FairAdaBN Formulation

FairAdaBN_a(x) =
$$\gamma_a \cdot \frac{x - \mu_a(x)}{\sigma_a(x)} + \beta_a$$

Loss Function

Best and Second-best are highlighted.

Fitzpartrick-17k Dataset											
Method	Accuracy↑	Precision↑	$\operatorname{Recall}\uparrow$	F1↑	EOpp0↓	EOpp1↓	Eodd↓	$E_0 \uparrow$	$E_1 \uparrow$	$E_2 \uparrow$	
Vanilla	$87.53^{0.14}$	$79.60^{0.33}$	$80.22^{0.19}$	$78.41^{0.15}$	$1.00^{0.30}$	$10.40^{1.43}$	$10.54^{0.98}$	/	/	/	
Resampling [18] [†]	$87.73^{0.27}$	$79.21^{0.40}$	$80.01^{0.35}$	$78.27^{0.42}$	$1.11^{0.26}$	$10.43^{1.91}$	$10.78^{2.06}$	-10.86	-0.03	-2.05	
Ind [18]†	$86.33^{0.12}$	$76.11^{0.38}$	$77.48^{0.18}$	$75.20^{0.09}$	$0.78^{0.33}$	$10.13^{0.51}$	$9.72^{0.94}$	20.63	1.23	6.41	
GroupDRO [19]†	$86.62^{0.19}$	$77.21^{0.62}$	$78.29^{0.52}$	$76.56^{0.56}$	$0.94^{0.34}$	$8.04^{0.90}$	$8.23^{1.25}$	5.07	21.66	20.91	
EnD [23]†	$86.80^{0.52}$	$77.32^{0.60}$	$78.58^{0.53}$	$76.90^{0.66}$	$1.22^{0.31}$	$9.01^{1.60}$	$9.20^{1.59}$	-22.83	12.53	11.88	
CFair [29]†	$87.91^{0.35}$	$78.62^{0.49}$	$79.73^{0.37}$	$78.12^{0.38}$	$0.93^{0.28}$	$9.83^{1.65}$	$10.17^{1.57}$	10.03	12.15	10.09	
FairAdaBN	$84.72^{0.40}$	$74.43^{0.22}$	$75.74^{0.33}$	$73.31^{0.48}$	$0.48^{0.09}$	$7.67^{3.86}$	$7.73^{3.95}$	48.79	23.04	23.45	
ICIC 2010 Detered											

ISIC 2019 Dataset

Method	Accuracy↑	Precision↑	$\operatorname{Recall}\uparrow$	$F1\uparrow$	EOpp0↓	$\mathrm{EOpp1}{\downarrow}$	Eodd↓	$E_0 \uparrow$	$E_1 \uparrow$	$E_2 \uparrow$
Vanilla	$92.52^{0.12}$	$82.64^{0.31}$	$82.94^{0.36}$	$82.60^{0.32}$	$0.85^{0.12}$	$6.12^{1.83}$	$6.02^{1.66}$	/	/	/
Resampling $[18]^{\dagger}$	$92.81^{0.28}$	$83.15^{0.50}$	$83.42^{0.51}$	$83.12^{0.52}$	$0.86^{0.15}$	$5.65^{2.83}$	$5.76^{2.78}$	-0.80	-2.48	-5.49
Ind [18]†	$92.43^{0.11}$	$82.16^{0.15}$	$82.46^{0.12}$	$82.11^{0.08}$	$0.85^{0.11}$	$7.04^{0.96}$	$7.37^{0.77}$	-0.10	-15.13	-22.52
GroupDRO [19]†	$91.86^{0.22}$	$81.30^{0.52}$	$81.44^{0.47}$	$81.17^{0.50}$	$0.82^{0.12}$	$6.78^{3.20}$	$6.62^{3.21}$	2.41	-22.99	-22.01
EnD [23]†	$92.13^{0.08}$	$81.42^{0.48}$	$81.64^{0.35}$	$81.36^{0.38}$	$0.98^{0.09}$	$5.18^{0.99}$	$5.10^{1.06}$	-15.72	14.94	14.86
CFair [29]†	$87.39^{0.77}$	$72.39^{2.67}$	$72.60^{2.22}$	$71.28^{2.12}$	$2.83^{1.09}$	$9.21^{3.53}$	$10.80^{4.15}$	-238.49	-56.03	-84.95
FairAdaBN	$89.11^{0.09}$	$74.24^{0.13}$	$74.79^{0.18}$	$74.18^{0.14}$	$0.69^{0.07}$	$4.85^{2.50}$	$4.76^{2.73}$	15.14	17.07	17.24

* E_0, E_1, E_2 denotes $FATE_{EOpp0}, FATE_{EOpp1}, FATE_{EOdd}$, respectively.

† Private implementation.

 $L = L_{CE} + \alpha \cdot L_{SD}$

$$= L_{CE} + \sum_{y=1}^{N_{cg}} \|\mathbb{E}_{X_i \sim D_{A=0}} \mathbb{I}(f_{\theta}(X_i) = y) - \mathbb{E}_{X_i \sim D_{A=1}} \mathbb{I}(f_{\theta}(X_i) = y)\|^2$$

Fairness-Accuracy Trade-off Efficiency

$$FATE_{FC} = \frac{ACC_m - ACC_b}{ACC_b} - \lambda \frac{FC_m - FC_b}{FC_b}$$

ı Study	(Mean ²	$^{\rm Std} \times 10$	$)^{-2}). \mathbf{B}$	est in	each g	roup ar	e hig	ghlig	htec
Accuracy↑	Precision↑	$\operatorname{Recall}\uparrow$	$F1\uparrow$	EOpp0↓	EOpp1↓	Eodd↓	$E_0 \uparrow$	$E_1 \uparrow$	E_2 1
$88.11^{0.51}$	$79.18^{0.56}$	$80.07^{0.49}$	$78.55^{0.56}$	$1.42^{0.25}$	$10.64^{2.15}$	$11.78^{2.34}$	/	/	/
$83.55^{0.24}$	$69.73^{0.83}$	$72.09^{0.41}$	$70.15^{0.69}$	$1.09^{0.04}$	$10.58^{1.80}$	$10.48^{1.97}$	18.06	-4.61	5.86
$87.32^{0.06}$	$78.12^{0.52}$	$79.08^{0.38}$	$77.37^{0.24}$	$1.18^{0.37}$	$10.96^{1.34}$	$11.47^{1.16}$	/	/	/
80.40 ^{0.23}	$65.32^{0.57}$	$69.42^{0.40}$	$65.25^{0.60}$	$1.43^{0.79}$	$7.70^{1.06}$	$8.30^{1.58}$	-29.11	21.82	19.71
$87.53^{0.14}$	79.60 ^{0.33}	$80.22^{0.19}$	$78.41^{0.15}$	$1.00^{0.30}$	$10.40^{1.43}$	$10.54^{0.98}$	/	/	/
$87.18^{0.50}$	$78.50^{0.75}$	$79.24^{0.68}$	$77.40^{0.71}$	$1.07^{0.16}$	$9.33^{0.23}$	$9.91^{0.29}$	-7.87	9.88	5.55
$85.02^{0.03}$	$73.76^{0.11}$	$75.67^{0.05}$	$73.63^{0.16}$	$1.39^{0.45}$	$15.30^{1.91}$	$15.05^{1.37}$	42.15	-49.94	-45.62
$84.82^{0.79}$	$73.44^{1.11}$	$75.15^{0.98}$	$73.17^{0.95}$	$1.26^{0.18}$	$13.39^{2.98}$	$12.76^{3.28}$	-29.10	-31.85	-24.16
$84.72^{0.40}$	$74.43^{0.22}$	$75.74^{0.33}$	$73.31^{0.48}$	$0.48^{0.09}$	$7.67^{3.86}$	$7.73^{3.95}$	48.79	23.04	23.45
84.57 $^{0.38}$	$74.26^{0.22}$	$75.40^{0.11}$	$72.91^{0.87}$	$1.10^{0.60}$	$8.53^{2.79}$	$8.40^{2.75}$	-13.38	14.60	16.92
	$\begin{array}{c c} Study \\ \hline Accuracy \\ \hline 88.11^{0.51} \\ \hline 88.155^{0.24} \\ \hline 87.32^{0.06} \\ \hline 87.32^{0.06} \\ \hline 87.53^{0.14} \\ \hline 87.18^{0.50} \\ \hline 85.02^{0.03} \\ \hline 84.82^{0.79} \\ \hline 84.82^{0.79} \\ \hline 84.57^{0.38} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccc} \mathbf{Study} & (\mathrm{Mean}^{\mathrm{Std}} \times 10^{-2}). \ \mathbf{B} \\ \hline & \mathrm{Accuracy}^{\uparrow} \ \mathrm{Precision}^{\uparrow} & \mathrm{Recall}^{\uparrow} & \mathrm{F1}^{\uparrow} \\ \hline & \mathbf{88.11^{0.51}} & \mathbf{79.18^{0.56}} & \mathbf{80.07^{0.49}} & \mathbf{78.55^{0.56}} \\ \hline & \mathbf{83.55^{0.24}} & 69.73^{0.83} & \mathbf{72.09^{0.41}} & \mathbf{70.15^{0.69}} \\ \hline & \mathbf{87.32^{0.06}} & \mathbf{78.12^{0.52}} & \mathbf{79.08^{0.38}} & \mathbf{77.37^{0.24}} \\ \hline & \mathbf{80.40^{0.23}} & 65.32^{0.57} & 69.42^{0.40} & 65.25^{0.60} \\ \hline & \mathbf{87.53^{0.14}} & \mathbf{79.60^{0.33}} & \mathbf{80.22^{0.19}} & \mathbf{78.41^{0.15}} \\ \hline & \mathbf{87.18^{0.50}} & \mathbf{78.50^{0.75}} & \mathbf{79.24^{0.68}} & \mathbf{77.40^{0.71}} \\ \hline & \mathbf{85.02^{0.03}} & \mathbf{73.76^{0.11}} & \mathbf{75.67^{0.05}} & \mathbf{73.63^{0.16}} \\ \hline & \mathbf{84.82^{0.79}} & \mathbf{73.44^{1.11}} & \mathbf{75.15^{0.98}} & \mathbf{73.17^{0.95}} \\ \hline & \mathbf{84.72^{0.40}} & \mathbf{74.43^{0.22}} & \mathbf{75.74^{0.33}} & \mathbf{73.31^{0.48}} \\ \hline & \mathbf{84.57^{0.38}} & \mathbf{74.26^{0.22}} & \mathbf{75.40^{0.11}} & \mathbf{72.91^{0.87}} \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

